

MOVIECLIPS.сом

Yellow change and clearance intervals

At the termination of a green phase, motorists approaching a signalized intersection are advised by a yellow signal indication that the red interval is about to commence ${ }^{35}$. The
speed and location of some approaching vehicles will be such that they can stop safely at the stop line; others will have to continue at their speed or even accelerate into or through the intersection. The minimum length of the clearance interval (which may include an all-red interval after the yellow indication) should accommodate both situations and eliminate the possibility of a dilemma zone in which a driver can neither stop safely nor legally proceed into or
 through the intersection. See Table 24-7.

Critical Distance

ITE Extended Kinematic Equation - First Recommended Practice (J ärlström, 2016)

Constant Maximum Velocity - Old ITE Kinematic Equation (Gazis, Heman, Maradudin 1959)

Walnut (SB) at Meeting Place. Comparing Lefts and Straights

Crashes
100,000 Red Light Camera Tickets

Suffiolk County, New

 YorkRed light Camera Safety Report-2015

Suffolk County, NY 2017

Fastest Tum (Cecc a relli, 2010)

Tum with Constant Deceleration - Chiu Liu, 2002

13

G reenville, NC

14

Wilmington, NC

15

Omissions

16

Impeded Traffic

d
17

Vehic les Egressing/Entering Nea rby Businesses

		Initi De				
Critical D						

Animation Created by:
Johnnie Hennings, P.E.
Aninatie Hennings, PE

18

Close-By Intersections

Solution - Includes Impeded Traffic @ Isolated Intersection This changes the definition of a yellow light.

Tolerances

Type of Tolerance	Geometric Characteristics	Symbol
Form	STRAIGHTNESS flatness CIRCULARITY CYLINDRICITY	$\begin{aligned} & - \\ & \square \\ & O \\ & C d \end{aligned}$
Profile	PROFILE OF ALINE PRofile of a surface	\frown
Orientation	angularity PERPENDICULARITY PARALLELISM	$\begin{aligned} & \angle \\ & \perp \\ & / / \end{aligned}$
Location	POSITION CONCENTRICITY SYMMETRY	$\begin{aligned} & \phi \\ & 0 \\ & = \end{aligned}$
Runout	CIRCULAR RUNOUT total runout	

$\varnothing .505-.525$	
サ¢.005(M) A D M B	
	Tertiary Datum Datum Material Condition Modifier Secondary Datum Primary Datum Material Condition Modifier Tolerance Diameter Symbol Indicating a Cylindrical Tolerance Zone Geometric Characteristic Symbol

By Plugging In Boundary Values

By Eror Propagation

$$
\begin{aligned}
& \Delta Y=\left|\frac{\partial Y}{\partial t_{p}} \Delta t_{p}\right|+\left|\frac{\partial Y}{\partial a} \Delta a\right|+\left|\frac{\partial Y}{\partial v_{c}} \Delta v_{c}\right|+\left|\frac{\partial Y}{\partial v_{i}} \Delta v_{i}\right| \\
& =\left|\Delta t_{p}\right|+\left|\frac{\mid v_{i}-2 v_{c}}{2 a^{2}} \Delta a\right|+\left|\left(\frac{1}{a}\right) \Delta v_{c}\right|+\left|\left(\frac{1}{2 a}\right) \Delta v_{i}\right| \approx \pm 3 \mathrm{sec}
\end{aligned}
$$

for a $45 \mathrm{mph}_{\mathrm{c}}$ and $20 \mathrm{v}_{\mathrm{i}}$

$$
24
$$

2070N Controller								
Phase	01	02	03	04	05	06	07	08
Minimum Green	7 sec	12 sec	7 sec	7 sec	7 sec	12 sec	7 sec	7 sec
Passage Gap	1.0 sec	2.0 sec						
Max 1	25 sec	45 sec	20 sec	35 sec	25 sec	45 sec	20 sec	35 sec
Yellow Change Int.	6.2 sec	4.3 sec						
Enforcement Delay ${ }^{*}$	2.8 sec	2.4 sec						
Red Clearance	3.4 sec	2.1 sec	3.6 sec	1.3 sec	2.8 sec	2.1 sec	2.9 sec	1.4 sec
Recall Position	None	Min Recall	None	None	None	Min Recall	None	None
Vehl Call Memory	Nonlock	Lock	Nonlock	Nonlock	Nonlock	Lock	Nonlock	Nonlock
Walk	-	7 sec	-	7 sec	-	-	-	-
Flashing Don't Walk	-	29 sec	-	16 sec	-	-	-	-

'Enforcement Delay: Red-light camera delay/grace periods cannot be set to values less than this. Also the police cannot enforce red-light running until the driver enters the intersection after this length of time. Because the Yellow Change Int. is set for the average driver, good drivers (half the driving population its slower than average) may inadvertently run the red light up to this time into the red.

Perception-reaction time a nd deceleration a re not consta nts. Good allowed drivers on the road exhibit a well-defined range of valid values. The curve of valid pere eption-reaction times has a range which tops at 2.6 sec onds. The curve of deceleration has a range starting at $7.4 \mathrm{ft} / \mathrm{s} / \mathrm{s}$.

Errors

26

Vc orDeceleration Measured at the Wrong Location

Critic al Distance

Dyna mic s of

Emergency

Sto pping Misa p plied to Comfortable Stopping

$$
Y \geq \boldsymbol{t}_{p}+\left[\frac{v_{c}-v_{i}}{a+G g}\right]+\frac{v_{i}}{2(a+G g)}
$$

where $G=y / x=g r a d e$ and $g=g r a v i t a t i o n a l a c c e l e r a t i o n$

History of the Yellow light

31

1920

33

1921

Traffic "Towers"
Fifth Avenue New York, NY

34

1923

Schenectady, NY

2017

The Henry Ford Dearbom, MI

The Yellow Change Interval Formula

1959

Denos Gazis 1930-2004 Solid State Physic ist and Traffic Scientist

Robert Heman
1914-1997 Physicist Known for
Research on Big Bang Theory: Microwave Radiation

For vehic les tra versing the critic al distance at a constant speed which is the maximum allowable speed.

$$
Y=t_{p}+\frac{v_{c}}{2 a}
$$

Institute of Transportation Eng ineers The Yellow Change Interval Equation

1985

$$
Y=t_{p}+\frac{}{2(a+g G)}
$$

MatsJ ärlström
Beaverton, OR 2013

2
Brian Ceccarelli
Apex, NC 2009

Jay Beeber Los Angeles, CA 2012

